18. Sammanfattning - Acclab h55.it.helsinki.fi

January 8, 2018 | Author: Anonymous | Category: Vetenskap, Fysik, Electricity And Magnetism
Share Embed Donate


Short Description

Download 18. Sammanfattning - Acclab h55.it.helsinki.fi...

Description

18. Sammanfattning

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.1

18.1. Kraft, f¨ alt och potential

Krafter F ¨ar fysikaliskt m¨atbara storheter Elf¨alt beror p˚ a kraften som F = Eq

(18.1)

Potential φ ¨ar en matematisk konstruktion som definieras av E = −∇φ

(18.2)

F¨ or punktladdningar i vila g¨aller Coulombs lag E=C

q b r , 2 21 r21

(18.3)

d¨ar C ¨ar enheten som definierar det elektriska enhetssystemet.

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.2

18.2. Ursprung och form av f¨ altena

• Elektriska laddningar (monopoler) i vila ger upphov till elf¨alt • Elektriska laddningar i r¨orelse ger upphov till magnetf¨alt • Elektriska laddningar i acceleration ger upphov till (elektromagnetisk) str˚ alning • Magnetiska monopoler existerar ej • Magnetiska dipoler ger upphov till magnetf¨alt • Tidsfo¨r¨anderliga magnetf¨alt ger upphov till elf¨alt • Tidsfo¨r¨anderliga elf¨alt ger upphov till magnetf¨alt • Monopolf¨alt avtar som 1/r 2 • Dipolf¨alt avtar som 1/r 3

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.3

18.3. Elektrostatik

I en elektrostatisk situation (ingen str¨ om, inget tidsberoende) g¨aller: (i) Inne i en ledare ¨ ar elf¨ altet noll. (ii) Inne i en ledaren ¨ ar laddningst¨ atheten noll. (iii) Nettoladdningar befinner sig p˚ a ytan. (iv) En ledare utg¨ or en ekvipotentialyta. (v) Elf¨ altet ¨ ar vinkelr¨ att mot en ledares yta.

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.4

18.4. Dielektrika

Ett perfekt dielektrikum (isolator) ¨ar ett material som inte inneh˚ aller n˚ agra fria laddningar alls. Dielektrika reagerar p˚ a yttre elektriska f¨alt s˚ a att de polariseras, d.v.s. dipoler induceras i materialet. Detta ger upphov till ett elf¨altsbidrag innanf¨ or och utanf¨ or dielektriket. Eftersom dielektrika polariseras, s˚ a har varje region med volymen dV ett dipolmoment Detta kan beskrivas med polarisationen P=

dp , dV

2

[P ] = C/m ,

(18.4)

Elektrisk f¨ orskjutning (displacement) eller elektriskt fl¨ odest¨ athet (flux ) definieras med D ≡ ε0 E + P

(18.5)

D = ε0E + P = (ε0 + χe(E))E ≡ ε(E)E

(18.6)

Fl¨ odet kan skrivas d¨ar ε ¨ar det dielektriska materialets permittivitet. Man definierar ocks˚ a den relativa permittiviteten eller dielektricitetskonstanten.εr via ekvationen ε ≡ εr ε 0 (18.7) Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.5

f¨ or vilket g¨aller

εr =

ε χe =1+ ε0 ε0

(18.8)

εr > 1 f¨or ¨ovriga media ¨an vakuum.

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.6

18.5. Elektromagnetisk energi

Energit¨atheten energi/volym fr˚ an elf¨alt ges av

u=

1 1 1 11 2 2 D · E = D · E = εE = D 2 2 2 2ε

(18.9)

Energit¨atheten f¨or isotropiska linj¨ara magnetiska media ¨ar

uM =

Elektrodynamik, vt 2013, Kai Nordlund

1 1 2 1 2 B · H = µH = B 2 2 2µ

(18.10)

JJ J  I II ×

18.7

18.6. Elektrisk str¨ om Laddningar i ro¨relse utgo¨r en (elektrisk) str¨ om och definieras

I ≡

dQ , dt

(18.11)

F¨ or de flesta metaller g¨aller Ohms lag. J = g(E)E,

(18.12)

d¨ar g kallas konduktivitet. Fo a kallade ohmiska — media g¨aller att ¨r linj¨ara isotropiska — ocks˚ g(E) ¨ar oberoende av E , s˚ a att J = gE (18.13) Man definierar ocks˚ a resistiviteten

η= och resistans R

R=

1 g

(18.14)

ηL A

(18.15)

Dessa ekvationer och energiekvation leder till “minimala elektroniken” “URI-PUI”:

U = RI Elektrodynamik, vt 2013, Kai Nordlund

(18.16)

JJ J  I II ×

18.8

P = UI som alla fysiker bo¨r komma ih˚ ag fast de skulle v¨ackas kl. 4 p˚ a natten i 3 promilles fylla!

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

(18.17)

18.9

18.7. Magnetiska material

Man kan skriva magnetiseringen f¨ or isotropiska material enligt M ≡ χM H

(18.18)

d¨ar χM ¨ar materialets magnetiska susceptibilitet. Fr˚ an detta f¨ oljer att B = µ0(H + M) = µ0(H + χM H) = µ0(1 + χM )H

(18.19)

Man definierar ett materials magnetiska permeabilitet µ med hj¨alp av ekvationen B ≡ µH

(18.20)

µ = (1 + χM )µ0 ≡ µr µ0

(18.21)

och d¨armed d¨ar µr ¨ar den relativa permeabiliteten. F¨ or para- och diamagnetiska material g¨aller att χM , µ ¨ar konstanter, f¨ orutsatt att det p˚ averkande magnetf¨altet inte ¨ar f¨or starkt. Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.10

F¨ or paramagnetiska material g¨aller att χM > 0, s˚ a att B > µ0H, d.v.s. magnetf¨altet f¨ orst¨ arks inne i materialet. Detta ger att µ > 1. Materialets dipoler vill allts˚ a ordna sig med det externa f¨altet. F¨ or diamagnetiska material har man att χM < 0 och B < µ0H, d.v.s. magnetf¨altet f¨ orsvagas inne i materialet. Vi har d˚ a att µ < 1. Materialets dipoler ordnar sig motsatt f¨altet, s˚ a att detta f¨ orsvagas inne i materialet. I allm¨anhet g¨aller att |χM |  1 f¨ or dessa material. Ferromagnetiska material har inte en konstant susceptibilitet eller permeabilitet, utan dessa varierar med det externa magnetf¨altet. Ferromagneter uppvisar en permanent magnetisering, d.v.s. de ¨ar magneter. Om en ferromagnet har magnetiserats av ett f¨alt till en punkt Hmax, Bmax, och man sedan minskar p˚ a det yttre f¨altet, s˚ a kommer (H, B)-punkterna inte att ligga p˚ a den kurva man fick d˚ a materialet magnetiserades. Detta beteende kallas hysteresis och ser typiskt ut som:

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.11

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.12

18.8. V˚ agor

Maxwells lagar leder direkt till v˚ agekvationen f¨ or magnetf¨ altet 2

2

(18.22)

2

(18.23)

∇ H − gµ∂tH − εµ∂t H = 0 samt v˚ agekvationen f¨ or elf¨ altet 2

∇ E − µ∂tg E − µε∂t E = 0 V˚ agekvationerna g¨aller f¨or linj¨ara, ledande eller icke-ledande neutrala media.

Monokromatiska v˚ agor betyder detta att endast en vinkelfrekvens ω f¨ orekommer. Dessa fortskrider i vakuum som 0 ±iκ·r −iωt −i(ωt∓κ·r) E (r, t) = E0e e = E0e (18.24) Imagin¨ardelen (f¨or att f˚ a en sinus-funktion) ger det fysikaliskt verkliga f¨altet 0

EP (r, t) = EP,0 sin(ωt ∓ κ · r)

(18.25)

V˚ agen r¨or sig allts˚ a i riktningen ±b u med hastigheten c

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.13

Grundl¨aggande ekvationer f¨or monokromatiska plana v˚ agor i vakuum:

ν

=

κ

=

λ

= =

κ

=

ω 1 = 2π T ω c c cT = ν c2π 2π = ω κ 2π λ

(18.26) (18.27) (18.28) (18.29) (18.30)

d¨ar T ¨ar perioden (tiden) i en oskillationsfrekvens.

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.14

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.15

18.9. Spridning av str˚ alning

Ifall

2π 2πc = (18.31) k ω alm˚ alets linj¨ara dimension g¨aller att str˚ alningens sprids som Rayleighs lag ¨ar mycket st¨orre ¨an str˚ λ=

dσ µ20ω 4 2 = | Komplicerat vektorberoende | dΩ 16π 2E02

(18.32)

Detta fo¨rklarar ocks˚ a varfo¨r himlen ¨ar bl˚ a, och solnedg˚ angen ro ¨d!

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.16

18.10. Klassiska elektrodynamikens lag om allting

Fyra grundl¨aggande ekvationer beskriver elektriska och magnetiska f¨alt fullst¨andigt i all situationer som n˚ ansin observerats ovanfo¨r kvantmekanikens skala:

∇·D

=

ρ

(18.33)

∇·B

=

0

(18.34)

∇×E

=

∇×H

=

∂B ∂t ∂D J+ ∂t −

(18.35) (18.36)

F¨ orsta ekvationen ¨ar Gauss’ lag, som f¨ oljer fr˚ an Coulombs experimentella lag om kraften mellan laddningar. Andra ekvationen f¨oljer fr˚ an Biot-Savarts experimentalla lag f¨ or hur fl¨ odest¨atheten kan best¨ammas fr˚ an givna str¨ommar. Tredje ekvationen ¨ar Faradays lag, d.v.s. den experimentella observationen att f¨ or¨anderliga magnetiska fl¨oden genererar elf¨alt. Fj¨arde ekvationen ¨ar en generaliserad form av Amp`eres lag, som f¨ oljer fr˚ an Biot-Savarts experimenElektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.17

tella lag. Tillsammans med de konstitutiva tensorekvationerna

D

=

D(E)

(18.37)

H

=

H(B)

(18.38)

J

=

J(E)

(18.39)

f¨ or allm¨anna icke-linj¨ara, anisotropiska material och Lorentzkraften

F

=

q(E + v × B)

(18.40)

ger Maxwells ekvationer en fullst¨andig klassisk beskrivning av v¨axelverkande elektromagnetiska partiklar och material. Kontinuitetsekvationen finns inbakad i dessa ekvationer, s˚ a den beh¨ over inte r¨aknas upp separat.

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.18

18.11. Final: den klassiska elektrodynamikens roll i fysiken

Som en sammanfattning av kursen, kan vi ¨annu repetera vilken roll den klassiska elektrodynamikens spelar i fysiken? Den praktiska betydelsen ¨ar klar: elektrodynamiken leder till all elektronik och optik som vi k¨anner till i vardagslivet. Via dess roll i v¨axelverkan mellan elektroner och atomk¨arnor i Schr¨ odingerekvationen har den dessutom en central roll till att leda till all kemi och materialfysik. Fundamentalt sett konstaterade vi i b¨ orjan av kursen att den elektrodynamiken som baserar sig p˚ a Maxwells ekvationer och Lorentz kraftekvation ¨ar den klassiska gr¨ansen f¨ or kvantelektrodynamiken. Den kvantmekaniska gr¨ansen kommer i de flesta fall fram f¨ orst innanf¨ or atomk¨arnan och mindre l¨angdsskalor ¨an den. Ovanom gr¨ansen ¨ar den klassiska elektrodynamiken verifierad av otaliga experiment och fungerar extremt bra. I slutet av kursen visade vi att den klassiska elektrodynamiken ¨ar helt kompatibel med relativitetsteorin, bara koordinattransformationen g¨ ors som Lorentz-transformationen och Einsteins postulat i speciella relativitetsteorin beaktas. Till slut kan vi konstatera att iom. att kvantmekaniken och relativitetsteorin fortfarande inte ¨ar ihopfogade med en “teori o¨ver allting”, ¨ar inte heller den klassiska elektrodynamikens slutgiltiga plats i det fysikaliska pusslet slutgiltigt klart. Men klart ¨ar att teorin ¨ over allting m˚ aste leda till den klassiska elektrodynamiken som ett gr¨ansfall fo ¨r vardagsn¨ara fysik.

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.19

Trevlig elektrodynamisk sommar!!

(Fotnot att grubbla o¨ver under semestern: kan du lista ut fr˚an kursens inneh˚all (j¨amf¨ort med tidigare enklare fysikkurser du tagit) orsaker till varf¨or en bil (eller annan metallbur) inte n¨odv¨andigtvis a¨ r ett fullst¨andigt bra skydd mot en blixt?

Elektrodynamik, vt 2013, Kai Nordlund

JJ J  I II ×

18.20

View more...

Comments

Copyright � 2017 NANOPDF Inc.
SUPPORT NANOPDF