徐隆亚教授报告下载

January 13, 2018 | Author: Anonymous | Category: Engineering & Technology, Electrical Engineering
Share Embed Donate


Short Description

Download 徐隆亚教授报告下载...

Description

Dr. Longya Xu Center for High Performance Power Electronics The Ohio State University

一、引言 二、SiC和GaN功率器件特点 三、SiC和GaN功率器件技术发展现状 四、 基于SiC和GaN功率器件的最优拓扑 五、研究内容及未来电网应用

第一代半导体功率器件

以Si双极型(BJT)功率晶体管为代表 向大功 率、和 高效,高

第二代半导体功率器件

以Si场效应晶体管和IGBT为代表

频方向 发展

第三代半导体功率器件

以SiC场效应功率晶体管和 GaN高电子迁移功率晶体管 为代表

人们寄希望于 宽禁带半导体 功率器件来解 决第一代、第 二代功率器件 的输出功率低、 效率较低和工 作频率有限等 方面的问题

SiC 和 GaN 由 于 独 特 晶 体 结 构 , 其 禁 带 宽 度 达 到 2.2eV(3C-SiC),3.3eV(4H-SiC)和3.4eV(GaN),远高于 GaAs(1.4eV)和Si(1.1eV),它们具备以下特点: • 工作温度很高,理论值结温可达600℃,从而器件的冷却系 统可大为简化。 • 热导率高, SiC达4.9W/cm℃, (Si为1.4),优势明显;SiC热 导率远远高于大多数半导体,室温时几乎高于所有金属. • 硬度高于GaAs和Si,SiC达到9级,仅次于金刚石;便于器 件实施高密度、大功率集成。 • 电 子 饱 和 漂 移 速 度 高 , 达 到 2x107cm/s(SiC) 和 2.5x107cm/s(GaN),适于高频工作。 • 击穿电场高达2x106V/cm(4H-SiC) 和3.3x106V/cm(GaN)为 Si的8倍和10倍,能够实现高工作电压。

• AlGaN/GaN异质结二维电子气浓度高(2X1013/cm2), SiC的掺杂浓度可达1019/cm3,能够实现高电流密度。 • 本征载流子浓度低,(4H-SiC为8.2x10-9cm-3 ,GaN为 1.9X10-10cm-3),便于管芯隔离。 • 抗辐照能力比GaAs和Si强~2个数量级,另外开关损耗 低1~2个数量级。

SiC and GaN BASED POWER ELECTRONICS • + 50 to 75 0 C operating temperature • 2-4X in power density • 1-5% increase in conversion efficiency

从20世纪90年代起,美国国防部就开始支持 (>$300M) SiC功率器件研究。 21世纪初,美国国防先进研究计划局(DARPA)启动的 宽禁带半导体技术计划(WBGSTI - widebandgap semiconductor technology initiative ),成为加速 和改善SiC和GaN等宽禁带材料和器件特性的重要“催 化剂” 。

• Significant Government investment has yielded near defect-free wafers • Defects (limits yields/performance) now at acceptable levels from multiple suppliers

Median Micropipe Density, cm-2

• Evolution to 4” wafers significantly impacts $/amp cost (77% more die/wafer)

200 100

100 mm

3-inch

50 20 10 5 2 1 2001

2002

2003

2004

Year

2003

2006

2007

• SiC diodes available since 2001. Price, performance/demand have improved metrics. • 2009 commercialization of switches - dramatic increase in potential SiC applications.

Cree SiC JBS Diode Mega-Amps Shipped Per Quarter

> 2x Reduction in Price of SiC Diode – Higher Quality Wafers – Larger Production Volumes – Increase Wafer Size

10.0

Q3-FY08 11.3 Mega-Amps Shipped

8.0 6.0

JBS = Junction Barrier Schottke

4.0

0.45

2.0

0.4 0.35 0.3

Q

1F Y0 5 2F Y0 5 Q 3F Y0 5 Q 4F Y0 5 Q 1F Y0 6 Q 2F Y0 6 Q 3F Y0 6 Q 4F Y0 6 Q 1F Y0 7 Q 2F Y0 7 Q 3F Y0 7 Q 4F Y0 7 Q 1F Y0 8 Q 2 FY 08 Q 3 FY 08

-

0.25

$/Amp

Quarter (Fiscal Year)

0.2

08 3Q

08 1Q

07 3Q

07 1Q

06 3Q

06

0

1Q

5A, 10A & 20A

0.05

05

1200V

0.1

3Q

1A, 2A, 4A, 6A, 8A, 10A, 20A

0.15

05

600V

1Q

Q

SiC JBS Diode Mega-Amps Shipped/Quarter

12.0

• SiC diodes and switches are highly potential in many applications; • SiC based power electronics is an enabling technology for electrifications

• Majority of power applications require switch + diode. • Power supplies • Motor drives • Inverters • Switches are now available • Continued “electrification” + renewed focus on energy independence + conservation will accelerate demand for SiC

Source: Yole’ Development Market Research Report

Power Supply Benefits

HEV Electrical Subsystems

Large SiC Emerging Market: - Diodes reduces motor losses up to 30%

• Area reduced 38% • Weight reduced 44% • Power density up 61%

- Diodes + MOSFETs reduce losses >50% - Liquid cooling system eliminated; dropping wt & system cost - Projected fuel efficiency gain - 5-15%

Honda – 680V, 200A SiC MOSFET inverters-> 46% loss reduction Nissan – SiC hetero-junction diode inverter-> 50% loss reduction

现有的SiC 功率器件技术数据

传统的电力电子拓扑

输入端口

集中的 多电力电 子器件 开关矩阵

集中的 大容量LC 储能元件

集中的 多电力电 子器件 开关矩阵

输出端口

适宜于SiC和GaN 器件的最优拓扑

一种可能的拓扑 – 开关电容元

例子: 电容开关子电路 - 模块性 分散性拓扑 LS1

LS2

S1

S3 C2

C1 S2

S4 LS3

LS4

S5

S7 C4

C3 DC

CIN

1

RLOAD

S8

S6

2

C6 LS6

LS5 S9

S11 C8

C7 S10

3

By utilizing the new topology, the power loss on the input capacitor is reduced to 3.1% of its original value . The output voltage ripple is reduced to 11% of the original value .

S12

Voltage Quadrupler DC/DC stage

1

2

LS1

C2 S7

LS2

S1

S4

S2

C1 S5

S9

VIN S8

S3 -

S6

S10

VOUT + L

RLOAD Voltage doubler based dc/ac stage.

Experimental Development Results

Photovoltaic Micro-Inverter without Inductor and Transformer

五、研究内容及未来电网应用

经过20多年的发展,在降低电力设备体积和 成本以及提高效率等方面,电力电子技术已经 成为主要手段。在电力输配电系统中,电力电 子技术在效率和成本方面能够完成传统技术所 不能提供的技术支持。在未来电网发展中电力 电子技术将发挥越来越重要的作用。

DC的产生形成了最初的电力系统,并且可以 认为是最自然的电力形态。AC系统出现是因为变 压器提供了一种相对简单的可在不同等级之间变 换电压的方法,以适应电力系统的要求。

基于碳化硅的HVDC和FACTS技术应用到输电 和配电系统后,将对电力系统智能化产生巨大的影 响。将以高智能方式, 在高性能, 低成本、高效率和 小体积等方面对传统的AC技术发起挑战。

适用于宽能带电力电子器件的新型拓扑

宽禁带电力电子器件驱动技术

宽禁带半导体器件环境适应性验证技术

宽禁带半导体器件在电力系统中的新应用

1。扣装式(clamp-on)微型传输线串联补偿器

微型传输线串联补偿器 – 原理图

微型传输线串联补偿器 – 效果

2 半导体固态电路变压器 2.1 传统式变压器

2.2 半导体固态电路变压器

Silicon Carbide (SiC) Power Semiconductors Enabling The Future “More Electric” Economy - DOE goal of 20% wind power - NREL/SR-500-38515 2% eff increase

$18B/yr US fuel cost savings - Minimize active cooling - Increase effective generator rating to 1.0 from 0.5

High Temperature High Efficiency

- US Solar Connected ~24 GW by 2015 - All solar is connected to grid via power electronics

High Frequency 100-300 lb savings - Replace 60Hz utility transformers with high frequency - 4X reduction in radar power supply weight

- Minimize active cooling

- Enables single cooling loop - Improves range by 3%

1.

DoE the first workshop of "Wide Bandgap Semiconductors in Clean Energy". Workshop is in Chicago on July 25th WBG semiconductors operate at temperatures above 150 oC without external cooling, have longer lifetimes at higher operating voltages, and switch at higher frequencies with fewer power. In the same way that the invention of the silicon chip 50 years ago led to the development of the modern computer and today’s electronics industry, WBG semiconductors such as silicon carbide (SiC) and gallium nitride (GaN), as well as zinc oxide (ZnO) and diamond (C), offer a similar opportunity to revolutionize the next generation of microelectronics and clean energy innovations. 2.

IEEE Workshop on Applications of Wide-band-gap Power Devices

Topics include : Material growth and device fabrication, High power applications of SiC device Approximate date of the workshop: Middle October of 2013

WBD circuit topologies Renewable energy and transportation Location: The Ohio State University

View more...

Comments

Copyright � 2017 NANOPDF Inc.
SUPPORT NANOPDF