Généralités sur les probabilités Fichier

January 14, 2018 | Author: Anonymous | Category: Mathématiques, Statistiques et probabilités
Share Embed Donate


Short Description

Download Généralités sur les probabilités Fichier...

Description

Chapitre II Généralités sur les probabilités Table des matières A Dénition d'une probabilité

1

B Probabilité conditionnelle

2

C Indépendance

4

A Dénition d'une probabilité Dénition 1

Une probabilité sur un espace mesurable (Ω, F ) est une mesure positive nie de masse un, i.e. une application P de F dans [0, 1] vériant 1) P (Ω) = 1 P S P (An ). 2) pour toute suite (An )n≥1 d'éléments de F deux à deux disjoints P ( An ) = n≥1

n≥1

Terminologie 2

Les éléments de F sont appelés événements. Si ω ∈ Ω est tel que {ω} ∈ F , {ω} est appelé événement élémentaire.

Propriété 3

1. P (Ac ) = 1 − P (A), car P (A) + P (Ac ) = P (A ∪ Ac ) = P (Ω) = 1 2. ∀A, B ∈ F P (A) + P (B) = P (A ∪ B) + P (A ∩ B) (car 1A + 1B = 1A∩B + 1A∪B ) S P 3. pour toute suite (An )n≥1 d'éléments de F P ( An ) ≤ P (An ) n≥1

4. pour toute suite croissante (An )n≥1 d'éléments de F C'est une conséquence du théorème de Beppo LEVI. 5. pour toute suite décroissante (An )n≥1 d'éléments de F

n≥1

lim P (An ) = P (

n→∞

n→∞

An )

n≥1

lim P (An ) = P (

C'est une conséquence du théorème de convergence dominée. 1

S

T

n≥1

An )

Remarque 4

Si ν est une mesure nie non nulle sur (Ω, F ), P =

ν est une probabilité. On en ν(Ω)

déduit que les propriétés 2 à 5 sont vériées par les mesures nies.

Exercice 5

TSoit (An )n≥1 une suite de F telle que pour tout n ≥ 1 P (An ) = 1. Montrer que P ( An ) = 1. n≥1

Exemple 6 (Mesure de Dirac)

Soit (Ω, F ) un espace probabilisable quelconque, et a un élément de Ω. On appelle mesure de Dirac en a la probabilité noté δa et dénie par ∀A ∈ F

δa (A) = 1A (a).

Si f est une application mesurable de (Ω, F ) dans R, f est intégrable, et

R

f d(δa ) = f (a).

Exercice 7

Donner une formule pour P (A ∪ B ∪ C).

B Probabilité conditionnelle Dénition 8

Soit B un événement de (Ω, F ) tel que P (B) > 0. Pour tout événement A on appelle probabilité conditionnelle de A sachant B le réel P (A|B) = PB (A) =

P (A ∩ B) . P (B)

Propriété 9

L'application PB est une probabilité, qui vérie P (B) = 1 et P (B c ) = 0.

Preuve 1. Pour tout A ∈ F on a PB (A) ∈ [0, 1] puisque P (A ∩ B) ≤ P (B). 2. P (Ω) =

P (Ω∩B) P (B)

= 1.

2

3. Si (An )n≥1 est une suite d'éléments de F deux à deux disjoints, les événements (An ∩ B)n≥1 sont aussi deux à deux disjoints ; donc PB (∪n≥1 An ) = P (B)−1 P [(

[

An ) ∩ B)]

n≥1 −1

= P (B) P [(

[

(An ∩ B)]

n≥1

= P (B)−1

X

P (An ∩ B)

n≥1

=

X

PB (An ).

n≥1

Propriété 10

1. Si P (B) > 0, on a P (A ∩ B) = P (A|B) × P (B). 2. Si de plus P (A ∩ B) > 0, on a P (A ∩ B ∩ C) = P (C|A ∩ B) × P (A ∩ B) = P (C|A ∩ B) × P (A|B) × P (B).

Dénition 11

On appelle système complet d'événements de l'espace probabilisé (Ω, F , P ) une partition mesurable de Ω composée d'événements de probabilité strictement positive, i.e. une suite (B1 , ..., Bn ) vériant a) ∀i ∈ [1..n] Bi ∈ F b) ∀i 6= j ∈ [1..n] Bi ∩ Bj = ∅ c) ∀i ∈ [1..n] P (Bi ) > 0.

Propriété 12 (Formule des probabilités totales)

Si (B1 , ..., Bn ) est un système complet d'événements, pour tout événement A P (A) =

n X

P (A|Bi ) × P (Bi ).

i=1

Preuve

La formule résulte de l'égalité A =

n S

(A ∩ Bi ) qui implique

i=1

P (A) =

n X

P (A ∩ Bi ) =

i=1

n X i=1

Cas particulier 3

P (A|Bi ) × P (Bi ).

Si P (B) ∈]0, 1[, (B, B c ) est un système complet d'événements ; en conséquence pour tout événement A P (A) = P (A|B) × P (B) + P (A|B c ) × P (B c ).

Propriété 13 (Formule de Bayes)

Si A et B sont des événements tels que P (A) > 0 et P (B) > 0 P (A|B) = P (B|A) ×

P (A) . P (B)

Preuve

La formule résulte de l'égalité P (A ∩ B) = P (A|B) × P (B) = P (B ∩ A) × P (A).

Corollaire 14

Si de plus P (Ac ) > 0, on a vu que P (B) = P (B|A) × P (A) + P (B|Ac ) × P (Ac ),

si bien que P (A|B) =

P (B|A) × P (A) . P (B|A) × P (A) + P (B|Ac ) × P (Ac )

Exemple 15

Trois boîtes d'ampoules B1 , B2 et B3 possèdent la composition suivante : - B1 contient 4 ampoules défectueuses et 6 ampoules non défectueuses - B2 contient 1 ampoule défectueuse et 5 ampoules non défectueuses - B3 contient 3 ampoules défectueuses et 5 ampoules non défectueuses . On choisit au hasard une boîte dans laquelle on prélève une ampoule. Sachant que l'ampoule prélevée est défectueuse, quelle est la probabilité pour qu'elle provienne de la boîte B1 ?

Réponse

48 113

C Indépendance Dénition 16

Deux événements A et B de l'espace probabilisé(Ω, F , P ) sont indépendants (par rapport à P ) si P (A ∩ B) = P (A) × P (B). 4

Dénition 17

Trois événements A, B et C de l'espace probabilisé(Ω, F , P ) sont indépendants (par rapport à P ) si - P (A ∩ B) = P (A) × P (B), P (B ∩ C) = P (B) × P (C) et P (C ∩ A) = P (C) × P (A) - P (A ∩ B ∩ C) = P (A) × P (B) × P (C).

Propriété 18

1. Si deux événements A et B sont indépendants, les couples d'événements (A, B c ), (Ac , B) et (Ac , B c ) sont indépendants : P (A ∩ B c ) = P (B) − P (A ∩ B) = P (B) − P (A) × P (B) = P (B)[1 − P (A)] = P (B) × P (Ac )

2. Tout événements A est indépendant de tout événement B vériant P (B) = 0 ou P (B) = 1. 3. Si P (B) > 0, A et B sont indépendants si et seulement si P (A|B) = P (A).

Principe empirique

Des événements empiriquement indépendants sont probabilistiquement indépendants.

5

View more...

Comments

Copyright � 2017 NANOPDF Inc.
SUPPORT NANOPDF