Global and Regional Factors of Inter-Annual and Inter

January 12, 2018 | Author: Anonymous | Category: Math, Statistics And Probability, Statistics
Share Embed Donate


Short Description

Download Global and Regional Factors of Inter-Annual and Inter...

Description

Global and Regional Factors of Inter-Annual and Inter-Decadal Variability of Hydro-meteorological conditions on the Black Sea Ukrainian Shores Yuriy ILYIN Marine Branch of Ukrainian Hydro-meteorological Institute (MB UHI) Soviet street, 61, 99011, Sevastopol, Ukraine [email protected]

Main issues Part 1:  Scales of variability: interannual, decadal and climatic;  AMO and NAO as indices of external climatic influence on the Black Sea. Part 2:  Latent (no measured directly) exogenic and endogenic factors on inter-annual and decadal scales;  Is there direct correlation between AMO (or NAO) and complex regional hydrometeo indices of the Black Sea (Ukrainian shores)?

Introduction 



MB-UHI is dealing a long time with studies of hydrometeorological conditions (regime) of the Azov and Black seas (last works are: Ilyin and Repetin, 2006; Ilyin, 2008-2010; Lipchenko et al., 2006; Ilyin et al., 2009, etc…). See also poster by Ilyin and Repetin Long-term changes of marine meteorological and hydrological parameters (such as air and water temperatures, wind velocity, atmospheric precipitations, sea level, water salinity) can be described as the sum of linear trends and quasiperiodic (inter-decadal and inter-annual) fluctuations.

Time-series representation:

 (t )  0  at   C (t )   I (t )   T 30

Linear (secular) trend

Climatic (interdecadal) variations

T 30

Inter-annual and decadal fluctuations

''







Modern estimates of trends and climatic variability in time-series of main meteorological and hydrological parameters mean annual values were discussed in previous works (Ilyin, 2009-2011, Ilyin & Repetin, 2006, 2011). They were obtained on the base of FSU and Ukrainian marine stations network observations which are performed since the end of 19th century till this time. Some results are on poster by Ilyin and Repetin

How natural climatic periodicities are manifested in observational data? 







Secular linear trends in the first approximation can be considered as evidence of unidirectional human impact on global and regional climate systems. However there are long-term fluctuations of climatic parameters with different periods on their background. Unfortunately even long enough secular series of instrumental hydrometeorological observations on the Black Sea coast do not allow to obtain the statistically significant estimates of low-frequency periodicities using the standard methods of spectral analysis. At the same time it is known that the regional climate in the Black Sea is under the influence of global processes that can be adequately described by the indices of Atlantic Multidecadal Oscillation (AMO) and North Atlantic Oscillation (NAO). Characteristics of the ocean influence and the values of these indices for regional climate studies are in the monograph (Polonsky, 2008).



Climate change indices such as North Atlantic Oscillation (NAO) and Atlantic Multi-decadal Oscillation (AMO) were subjected to spectral analysis in order to obtain their significant lowfrequency spectral peaks of variability.

AMO index (1856-2008) Source: http://www.cdc.noaa.gov/Timeseries/AMO/ Series: Mean annual values, smoothed by 5-year moving average Spectral analysis: Lomb periodogram (significant peak 66 years) 0,5

60 0,4

50

0,3 0,2 0,1 AMO

Power

40 30

0 -0,1

20

-0,2

10 -0,3 -0,4

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 Frequency

1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 19902000 2010 Year

NAO index (1824 – 2008) Source: http://www.cru.uea.ac.uk/~timo/datapages/naoi.htm Series: winter (Dec-Mar), smoothed by 5-year average, detrended Spectral analysis: Lomb periodogram (significant peaks on 76, 38, 22 yrs) 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

1 NAO win (G-I), 5-yr averaged

Power

2

0

-1

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,1 1830 1840 1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Frequency

Year

NAO index paleo-reconstruction (1500 – 2001) Series: winter (Dec-Feb), smoothed by 5-year average, detrended Spectral analysis: Lomb periodogram (significant peaks on 173, 95, 67, 34, 22 yrs)

ftp://ftp.cru.uea.ac.uk/data

30

20

Power

Reference: Luterbacher, J., Xoplaki, E., Dietrich, D., Jones, P.D., Davies, T.D., Portis, D., GonzalezRouco, J.F., von Storch, H., Gyalistras, D., Casty, C., and Wanner, H., 2002. Extending North Atlantic Oscillation Reconstructions Back to 1500. Atmos. Sci. Lett., 2, 114-124.

10

0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 Frequency

0,1









Revealed periods of climatic variability obtained for the NAO series practically coincide with the low-frequency oscillations in solar activity (SA) described by the series of Wolf numbers (Herman and Goldberg, 1981; Landscheidt, 1998). As is known, except of the most expressed 11-year Schwabe cycles, changes in the SA have 22-year Hale cycles and the secular Gleissberg cycles. Additionally there is a 180-year cycle explained by the period of the Sun rotation relative to the centre of the solar system mass and an associated 35-year cycle. In a circle of geo- and astrophysics possible mechanisms for the external (space) influences on Earth's climate are discussed (Landscheidt, 1998), but the debate about the prevalence of natural climate variability over anthropogenic factors (greenhouse gases) is far from complete. Evidently the 70-year cycle of AMO is not related to extraterrestrial factors while NAO reflects both own low-frequency vibrations of the “ocean-atmosphere” and the variation of external influences on global climate.





Given the fact that climatic changes are lowfrequency oscillations with periods of no less than 30 years (Polonsky, 2008), it was attempted the Least Squares (LS) approximation of the hydrometeorological series by the superposition of harmonics with periods 95, 67 and 34 years. Previously linear trends were removed from the original series

Long-period variations in the Black Sea: Climatic changes of the mean annual air temperature in Yalta and Odessa approximated by the sum of harmonic functions with periods of 95, 67 and 34 years, revealed from spectrum of paleo-NAO 2

2

Yalta

1 Температура, °С

Температура, °C

1

Odessa

0

0

-1

-1

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Год

1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Год

Long-period variations in the Black Sea:

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 -0,1 -0,2 -0,3 -0,4 -0,5 -0,6 -0,7 -0,8 -0,9

Sevastopol Скорость ветра, м/с

Скорость ветра, м/с

Climatic changes of the mean annual wind velocity in Sevastopol and Odessa approximated by the sum of harmonic functions with periods of 95, 67 and 34 years, revealed from spectrum of paleo-NAO

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Год

0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 -0,1 -0,2 -0,3 -0,4 -0,5 -0,6 -0,7

Odessa

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Год

Long-period variations in the Black Sea: Climatic changes of the mean annual river discharge and precipitations (km3) approximated by the sum of harmonic functions with periods of 95, 67 and 34 years, revealed from spectrum of paleo-NAO 200

River inf.

200

100

Объем, км3

Объем, км3

100

Precip.

0

-100

0

-100

1930 1940 1950 1960 1970 1980 1990 2000 2010 Год

1930 1940 1950 1960 1970 1980 1990 2000 2010 Год







Above approximations satisfactorily describe the long-period (decadal and secular) changes in observations series, which serve as proof of the natural global climatic oscillations impact on regional climate changes. However, the nature of the original series and the low-frequency variations is unequal for different areas of the coast which reflect the impact of the various regional factors on local hydrometeorological conditions. Thus, climate changes reflect significant differences of physical-geographical conditions of the northwestern Black Sea and the southern coast of the Crimea peninsula.

Conclusion (1) : 





Main period of the last centuries inter-decadal variability is the period of about 70 years. Besides, significant spectral peaks were discovered in the NAO time-series on the scales of secular changes (95, 173 years) and more high-frequency inter-decadal oscillations (34, 22 years). Close periods exist also in the SA index time series (i.e. Wolf numbers). Superposition of harmonic functions with periods 95, 67 and 34 years describes satisfactory the multiannual fluctuations of the observed hydrometeorological values for the Black Sea. Regional differences of climatic variability are manifested for different regions of Ukrainian seashore

Factor analysis of data series 



To study how related “global” and “regional” factors in time series of different parameters measured in different points of the shore, exploratory factor analysis was performed using the algorithm of principal components (PC) for correlation matrices; Latent (not measured directly) factors: exogenic (“globality”) – unidirectional changes in all points of measurements and endogenic (“regionality”) – differently directed changes for different regions of the shore

Location of observation points used for the time series construction Hydrometeorological variables:

Odessa Khorly

Wind velocity (W or WV)

Primorskoye

Air temperature (TA) Evpatoria

Water temperature (TW) Feodosia

Sevastopol Yalta Cape Khersones

Precipitations (P or Pr) Sea level (SL)

Salinity (S) 2 kinds of time series were constructed for the each parameter: 1) Yearly mean values for 1945 – 2009 (1952 -2009 for S): inter-annual scale (2-year and more periods) 2) 5-year mean values for 1925-2009 (1950-2009 for S): decadal scale (10-year and more periods)

Wind velocity: yearly mean values, 1945-2009 PC Eigenvalue % Variance 1 3.78253 64.454 2 0.984687 16.779 3 0.44019 7.5007 4 0.342968 5.8441 5 0.192841 3.286 6 0.125398 2.1368 Jolliffe cut-off 0.27047

0.4484

0.4276

0.3347

0.3303

0.399

0.4856

Eigenvalue

2

1

2

3

4

5

6

Evpatoria Feodosia

4 3

Yalta

W_Fds

2

Cape Khersones PC score

W_Ylt

W_Khs

W_Stp

Sevastopol

2

1 1987 1983 1985

0.5643

1988

1

11978 980 11977 981 1975 1970 1979

1982

1 0

1945

-1

1948 1947

-2

1989

0.1194

0

-0.005996

-0.4217

Component 2

0.3157

1990 1984 1997 1994 1986 1992 0

W_Fds

W_Ylt

W_Khs

W_Stp

W_Evp

-0.6244

W_Ods

Loading

3

Co mpo nent

W_Evp

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9

W_Ods

Loading

Odessa

4

19741967 1976

20001995 19991998 1991 2001 1996 2004 2003 2002

-1

-3

1971 1973 1946 1968

10

11969 950 1964 1972 1949 1 961 1963 1965 1952 1966 1957

1993

1951

2006 2005 2007 2008 2009

1953

-2

-1

0 Co mpo nent 1

1

2

1959

3

PC-1 PC-2

1954 -3

30

40

Year number (1945-2009)

1956 1958 19551960 1962

20

4

50

60

Wind velocity: 5-year mean values, 1925-2009 PC Eigenvalue % Variance 1 3,76792 69,916 2 0,898886 16,679 3 0,302493 5,613 4 0,265352 4,9238 5 0,116313 2,1583 6 0,0382312 0,7094 Jolliffe cut-off 0.62874

1

0,3525

0,4957

0,4449 0,3469 0,3422

2

3

4

5

6

Co mpo nent

0

Evpatoria 2

Feodosia

Sevastopol

1

W_Fds

Cape Khersones

0 PC score

W_Ylt

W_Khs

W_Stp

2

1 2007 1957 1962 1952

1

0,5853

-2

-0,3584

1942

1992 1972

PC-1

1947

-0,5773

PC-2

1977 1982

1987

W_Fds

W_Ylt

W_Khs

W_Stp

W_Evp

W_Ods

-1

1927

-3

-2

-1

0

Co mpo nent 1

1

2

3

2007

2002

1997

1992

1987

1982

1977

1972

1967

1962

1997

1957

1932

1937

1952

1967

0

1947

2002

1927

-0,005026

Component 2

0,01047

1942

-3

0,4422

0

-1

1937

W_Evp

W_Ods

Yalta

Loading

2

1

1932

Loading

0,4411

3

Eigenvalue

Odessa

4

Air temperature: yearly mean values, 1945-2009 5

PC Eigenvalue % Variance 1 4,54574 92,404 2 0,210356 4,276 3 0,091396 1,8579 4 0,0402877 0,81896 5 0,0316175 0,64271 Jolliffe cut-off 0.68872

4 Eigenvalue

Odessa

3

2

1

2

Evpatoria

3 Co mpo nent

Feodosia

Sevastopol

5 4 3 0,452

0,4494

0,4487

0,4542

2 PC score

0,4315

1 0 -1 -2 -3

TA_Fds

TA_Ylt

TA_Stp

-4 TA_Evp

1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 -0,1 -0,2 -0,3 -0,4 -0,5 -0,6 -0,7 -0,8 -0,9

TA_Ods

Loading

Yalta

10

20

30

40

Year number (1945-2009)

50

60

4

5

Air temperature: 5-year mean values, 1925-2009 Eigenvalue % Variance 4,12873 91,872 0,209957 4,672 0,110598 2,461 0,0300555 0,66879 0,0146398 0,32577 Jolliffe cut-off 0.62916

5

4 Eigenvalue

PC 1 2 3 4 5

Odessa

Evpatoria

3

2

1

Feodosia

Sevastopol

2

3

Yalta

1

Co mpo nent

5 0,4549 0,4361

4

0,4399 0,4539

3 PC score

0

2 1 0

2007

2002

1992 1997

1987

1977 1982

1967 1972

1962

1952 1957

1947

1937 1942

-2 1927 1932

TA_Fds

TA_Ylt

TA_Stp

TA_Evp

-1 TA_Ods

Loading

0,451

4

5

Water temperature: yearly mean values, 1945-2009 5

PC Eigenvalue % Variance 1 4,5332 92,219 2 0,153216 3,1169 3 0,116208 2,364 4 0,0709133 1,4426 5 0,0421697 0,85785 Jolliffe cut-off 0.6882

4 Eigenvalue

Odessa

3

2

1

Evpatoria

2

3 Co mpo nent

Feodosia

Sevastopol Yalta 1

5 4 0,4516

0,4497

0,4434

3

0,4456

PC score

2 0

1 0 -1 -2

TW_Fds

TW_Ylt

TW_Stp

TW_Evp

-3 TW_Ods

Loading

0,4458

-4 10

20

30

40

Year number (1945-2009)

50

60

4

5

Water temperature: 5-year mean values, 1925-2009 PC 1 2 3 4 5

Odessa

Eigenvalue % Variance 4,10097 90,918 0,278897 6,1831 0,0726385 1,6104 0,0351542 0,77937 0,0229547 0,5089 Jolliffe cut-off 0.63149 5

4

Feodosia

Sevastopol 1

Yalta 0,4447 0,4468 0,4483

0,4476 0,4487

3

2

1

2

5

3 Co mpo nent

4 0

3

1 0 -1 -2

2007

2002

1992 1997

1987

1977 1982

1967 1972

1962

1952 1957

1947

1937 1942

-3 1927 1932

TW_Fds

TW_Ylt

TW_Stp

TW_Evp

PC score

2

TW_Ods

Loading

Eigenvalue

Evpatoria

4

5

Precipitations: yearly mean values, 1945-2009 PC Eigenvalue % Variance 1 3.21358 64.279 2 0.7646 15.294 3 0.465429 9.3097 4 0.333887 6.6785 5 0.221895 4.4384 Jolliffe cut-off 0.6986

3 Eigenvalue

Odessa

4

2

1

1

0.4938

0.4702

0.4697

2

0.4473

Loading

0.3384

3

4

5

Co mpo nent

0

Feodosia

Sevastopol Yalta

Cape Khersones

5

3

3

P_Fds

2 1983

2

1

2002

0

-0.008975-0.01452

0

-1

P_Fds

P_Ylt

P_Khs

P_Stp

-0.8831 P_Ods

Loading

0.3976 0.2484

Component 2

1994 1

PC score

P_Ylt

P_Khs

P_Stp

P_Ods

4

1999

1950 1987 1989 1964 1992 1991 199619852001 1955 19721998 1 951 1 959 1948 1982 1956 1995 1946 1945 1973 1953 200819572009 1990 1960 2003 1 962 2007 1968 1986 1954 1967 1975 1979 1993 1974 1949 2006 1947 1961 1965 1981 2004 2000 19691977 1978 1 976 19631958 1988 1980 1971 1984 1952 1970 1966 2005 -3

-2

-1

0

1

2

Co mpo nent 1

3

4

1 0 -1

1997

-2 -3

10

20

30

40

Year number (1945-2009)

PC-1 PC-2 5

6

50

60

Precipitations: 5-year mean values, 1925-2009 4

PC Eigenvalue % Variance 1 3,35931 67,239 2 0,682865 13,668 3 0,456327 9,1337 4 0,322828 6,4616 5 0,174731 3,4974 Jolliffe cut-off 0.69945

3 Eigenvalue

Odessa

2

1

1

0,4883 0,4843 Loading

0,3707

2

3

0,4272 0,4551

0

4

5

Co mpo nent

Feodosia

Sevastopol

4

Yalta

Cape Khersones

3 2

2

1

1

1 0 -1

1972

1937

-0,153

PC-1

-1

-0,3345

-0,3815

1997

PC-2

P_Fds

P_Ylt

P_Khs

P_Stp

P_Ods

1992 -3

-2

-1

0 Co mpo nent 1

1

2

3

4

2007

2002

1992 1997

1987

19872002

0

1977 1982

1932

1952

1967 1972

-3 1962

1927

1952 1957

11962 957 1947

2007 1982

1947

0

-2

1977

1937 1942

0,2601

1942

1927 1932

Component 2

0,8072

Loading

PC score

P_Fds

P_Ylt

P_Khs

P_Stp

P_Ods

1967

Sea level: yearly mean values, 1945-2009

Chernomorsk

6 5 4

Eigenvalue

Khorly

PC Eigenvalue % Variance 1 5.69787 95.154 2 0.161114 2.6906 3 0.0533152 0.89036 4 0.043241 0.72212 5 0.0224371 0.3747 6 0.0100571 0.16795 Jolliffe cut-off 0.69992

3 2 1

2

3

4

Co mpo nent

Evpatoria Feodosia

Sevastopol Yalta

5

1

4 3 2 0.4157 0.4099 0.391

1 PC score

0.4102 0.411

0

0 -1 -2 -3 -4

SL_Fds

SL_Ylt

SL_Stp

SL_Evp

SL_Chm

-5 SL_Khl

Loading

0.4111

-6 10

20

30

40

Year number

50

60

5

6

Sea level: 5-year mean values, 1925-2009

Khorly Chernomorsk

6 5 4 Eigenvalue

PC Eigenvalue % Variance 1 5,80404 97,65 2 0,0741789 1,248 3 0,0307556 0,51745 4 0,0246876 0,41536 5 0,00772474 0,12996 6 0,00234684 0,039484 Jolliffe cut-off 0.69344

3 2 1

Evpatoria

2

3

Feodosia

Sevastopol Yalta

1

4 3 2 1 PC score

0

0 -1 -2

2007

2002

1992 1997

1987

1977 1982

1967 1972

1962

1952 1957

1947

1937 1942

-4 1927 1932

SL_Fds

SL_Ylt

SL_Stp

SL_Evp

SL_Chm

-3 SL_Khl

Loading

0,4109 0,4081 0,4099 0,4114 0,4069 0,4021

4

Co mpo nent

5

6

Salinity: yearly mean values, 1952-2009 PC Eigenvalue % Variance 1 2,09728 44,93 2 1,0009 21,442 3 0,78665 16,853 4 0,51704 11,077 5 0,265998 5,6984 Jolliffe cut-off 0.65351

Primorskoye

2 Eigenvalue

Odessa

3

1

1 2

Cape Khersones

Loading

0,5124 0,3081

4

5

Co mpo nent

Feodosia

0,5596

3

0,455

0,3498

3

Yalta

0

2 3

1

Component 2

1

0

0,04358

2007

0

0,09377

1978 1980 1979

1975 1977 1969 1974 1964 1962 1973 1960 1976 1959 19881963 1 958 1989 2003 1967 11947 948 1949 1953 1946 945 1 985 1 950 1 993 2004 1983 20091998 1991 1952 1965 1951 1972 2002 11992 1999 1 957 1996 986 1995 1987 2006 1984 20012000 1955 1994 2005 1956 1968 1966 1961

2008

-1

-1

-3

10

20

PC-1

1997 1954

Fds

_Ylt

Khs

-3

Ods

30

40

Year number (1952-2009)

-0,3982

-0,4121

0

-2

-2

Prm

Loading

0,813

1971

1981 1982 1990

1

PC score

2

S_Fds

S_Ylt

S_Khs

S_Ods

S_Prm

1970

-2

-1

0 Co mpo nent 1

1

2

3

4

PC-2

50

Salinity: 5-year mean values, 1950-2009 Odessa

Eigenvalue % Variance 1,93269 55,8 1,14691 33,113 0,264239 7,629 0,089541 2,5852 0,0302281 0,8727 Jolliffe cut-off 0.48491

Primorskoye

2

Eigenvalue

PC 1 2 3 4 5

1

1

Cape Khersones Loading

0,6078 0,583

Feodosia 0,2559

2

0,3092 0,3601

4

5

Co mpo nent

Yalta

0

3

2 3

1

1987 2002

0

1997

1962 1982 1992 1942 927 932 937 1967

-2

S_Fds

S_Ylt

S_Khs

S_Ods

-0,6087

-2

-1

0 Co mpo nent 1

1

PC-1 2

3

PC-2

2007

2002

1997

1992

1987

1982

1977

1972

1967

1952 1957

-2

-0,4251

1962

-0,399

-1

1972 1977

-1

0

S_Prm

Loading

0,4043 0,3551

2007

1957

Component 2

1

0

1952

1

PC score

2

S_Fds

S_Ylt

S_Khs

S_Ods

S_Prm

1947

Percentage of “globality” (PC-1) and “regionality” (PC-2) Variable

1-year averaged

5-year averaged

PC-1

PC-2

PC-1

PC-2

Wind veloc.

65

17

70

17

Air temperat.

92

92

Water temp.

92

91

Precipitations

64

Sea level

95

Salinity

45

15

67

14

98 21

56

33

Complex variables of the Ukrainian coast HM state: from 5 to 2 variables: 1

0,4191 0,4099 Loading

0,469

0,4858

0

SL

Pr

TW

TA

-0,4475

W

PCA (correlation matrix) 5-year mean values: WV, TA, TW, Pr, SL PC Eigenvalue % Variance 1 3,24748 69,543 2 0,9457 20,252 3 0,37465 8,022 4 0,0854076 1,829 5 0,0165286 0,353 Jolliffe cut-off 0.65377

1

0,5677 0,575

0 -0,2943

SL

Pr

TW

TA

-0,3816

W

PC-2: windy, warm and dry

Loading

PC-1: not windy, warm and watery

0,3389

2 1937

4 2007

1962

2

1942

1927 1947

2002 1932

PC score

1972 1957

1967 1977

1992 1982

-1

1 0

1997

-1

-2

-1

0

1

2

Co mpo nent 1

3

2007

2002

1992 1997

1987

1977 1982

1967 1972

1962

1952 1957

1927 1932

1987

1947

-2

-2

1937 1942

0

3

1952

4

2

r = 0.54 (p=0.03)

1937 2007

1

1952

Significant (but not too close) correlation was obtained only between AMO and PC-2 on decadal scale

1962 1927 0

1942 2002 1932

1947

1972 1967

PC-2

Component 2

1

1977

1957

1992 1982

-1

1997

-2 1987

-0,2

-0,1

0 AM O

0,1

0,2

0,3

Conclusion (2) : 



On inter-annual and decadal scales, variations of air and water temperatures as well as sea level are under global influence while changes of wind velocity, precipitations and salinity are subjected also by substantial regional impact (more or less evident result, except for water temperature) To date, no practically significant linear correlations were obtained between global indices (AMO and NAO) and some measured or latent parameters used for the description of HM conditions within the Ukrainian Black Sea shore on inter-annual and decadal scale of variability.

Thanks for your attention!

View more...

Comments

Copyright � 2017 NANOPDF Inc.
SUPPORT NANOPDF