TD 2 Probabilités conditionnelles, indépendance

January 13, 2018 | Author: Anonymous | Category: Mathématiques, Statistiques et probabilités
Share Embed Donate


Short Description

Download TD 2 Probabilités conditionnelles, indépendance...

Description

L2 MIASHS 51EE07MT Probabilités & Statistiques

Université Paris Diderot 2016 - 2017

TD 2

Probabilités conditionnelles, indépendance

Exercice 1. On lance 2 dés. Quelle est la probabilité qu’au moins l’un d’entre eux donne 6 sachant que les deux résultats sont différents ? Exercice 2. On considère 2 boîtes : l’une contient une bille noire et une blanche et l’autre deux noires et une blanche. On choisit au hasard une boîte de laquelle on tire une bille. Quelle est la probabilité que la bille ainsi tirée soit noire ? Si l’on sait que la bille est blanche, quelle est la probabilité que ce soit la première boîte qui ait été choisie ? Exercice 3. Soit r ∈ N∗52 . Un joueur A propose à un joueur B le jeu suivant : tirer r cartes parmi 52 et, si l’as de pique figure parmi les r cartes, B a gagné. 1. Quelle est la probabilité que B gagne ? 2. A envisage de tricher de la façon suivante : il subtilise k cartes, où k É 52 − r , avant que B ne tire ses r cartes, les k cartes subtilisées étant prises au hasard. Quelle est la probabilité que B gagne ? ¡T ¢ Exercice 4. Soient (Ω, A , P) un espace probabilisé, n ∈ N∗ et (E i )1ÉiÉn ∈ A n tel que P 1Éi 0. Montrer que P

³\ n

i=1

´ ´ Y ³ ¯¯ \ Ej . P Ei ¯ Ei = 1É j 0 tels que A ∈ A et B ∈ A ne sont pas PC -indépendants, où l’on a noté PC = P(· | C ). Exercice 10. Soient (Ω, A , P) un espace probabilisé, n ∈ N∗ et (E i )1ÉiÉn ∈ A n un n-uplet d’événements mutuellement P-indépendants. Montrer que ! à n ¡ n Y [ ¢ Ei = 1 − 1 − P (E i ) . P i=1

i=1

Exercice 11. Soient (Ω, A , P) un espace probabilisé et (A, B,C ) ∈ A 3 un triplet d’événements mutuellement P-indépendants. S 1. Prouver que A c et B C sont P-indépendants. 2. On suppose que P(B) > 0 et P(C ) > 0. Donner une condition nécessaire et suffisante pour que A ∩ B et A ∩ C soient P-indépendants.

Exercice 12. Soient n ∈ N∗ et p ∈ [0, 1]. Peut-il exister sur un espace probabilisé (Ω, A , P) n événements P-indépendants de même probabilité p et dont la réunion est de probabilité 1 ? 1

Exercice 13 (U NE AFFAIRE DE FAMILLE). Soient p ∈ ]0, 1[ et a ∈ ]0, 1/2[. Dans une population donnée, on suppose que la probabilité pour un enfant d’être un garçon est p et que, pour tout k ∈ N, la probabilité qu’une famille ait k enfants est p k , où la suite (p k )k∈N est définie par p 0 = p 1 = a, p k = (1 − 2a)2−(k−1) pour k Ê 2. Pour tout k ∈ N, on note A k l’événement « la famille a k enfants », F k « la famille a k filles » et G k « la famille a k garçons ». 1. Calculer P(G j | A k ) pour tout couple ( j , k) ∈ N2 . 2. Calculer P(G j ) pour tout j ∈ N tel que j Ê 2. 3. Calculer la probabilité qu’une famille de j garçons ait seulement k enfants. Application : p = 21 , k = j = 2. 4. Quelle est la probabilité qu’une famille ait exactement deux filles sachant qu’elle a exactement deux garçons ? Exercice 14. Soient A, B deux événements de l’espace probabilisé (Ω, A , P) tels que 0 < P(B) < 1. 1. Montrez que

¯ ¯ ¯ ¯ ¯P(A ∩ B) − P(A)P(B)¯ É 1 ¯P(A|B) − P(A|B c )¯ 4 Indication : exprimer P(A|B) − P(A|B c ) en fonction des seules probabilités P(A ∩ B), P(A), P(B).

(⋆)

2. Que donne l’inégalité (⋆) lorsque A ⊆ B ? Dans quels cas est-ce une égalité ?

Exercice 15. Soient n ∈ N∗ , p ∈ [0, 1] et (Ω, A , P) l’espace probabilisé sous-jacent. On observe une suite de n lancers d’une pièce. On suppose que les lancers sont P-indépendants les uns des autres et que la P-probabilité d’obtenir Pile à chaque lancer vaut p. 1. Décrire l’espace probabilisé associé à cette expérience. Calculer la probabilité (a) d’obtenir au moins un Pile au cours des n lancers, (b) d’obtenir exactement k Pile où k ∈ N. 2. Décrire l’espace probabilisé obtenu lorsqu’on conditionne par l’événement Bk , « obtenir exactement k Pile au cours des n lancers ». 3. Si n = 6, calculer la probabilité, sachant qu’on a obtenu exactement deux Pile, que ces Pile soient consécutifs. Exercice 16. Soient p ∈ [0, 1] et (Ω, A , P) l’espace probabilisé sous-jacent. L’expérience consiste en une infinité de lancers d’une même pièce. On suppose que les lancers sont P-indépendants les uns des autres et que la probabilité d’obtenir Pile à chaque lancer vaut p. 1. Décrire l’espace probabilisé associé à cette expérience. Pour tout n ∈ N∗ , calculer la probabilité que le premier Pile survienne au n e lancer. 2. Montrer que, si p > 0, on est sûr d’obtenir au moins un Pile au cours de l’expérience. 3. On suppose dorénavant p > 0. (a) Soit n ∈ N∗ . Montrer que les événements An : « le premier Pile survient au n-ième lancer » et C1 : « le premier Pile est immédiatement suivi d’un Face » sont P-indépendants. (b) Est-ce encore le cas si on remplace C1 par D3 : « le premier Pile est immédiatement suivi de trois Pile » ? Exercice 17. Émilie et Denis jouent aux dés. On note (Ω, A , P) l’espace probabilisé sous-jacent. 1. Le jeu est le suivant. Émilie commence la partie et lance son dé. Elle gagne si Denis obtient, en lançant à son tour le dé, un nombre plus petit ou égal au sien. Déterminer la probabilité p que Emilie gagne cette partie. 2. Émilie et Denis font plusieurs parties de ce type de la manière suivante. Émilie commence la première partie. Si elle gagne, elle commence la deuxième partie ; sinon, c’est Denis. Et ainsi de suite : le joueur qui gagne une partie donnée commence la partie suivante. Pour tout n ∈ N∗ , on désigne par En l’événement « Émilie gagne la n e partie » et l’on note un = P(En ) . (a) Calculer u1 . (b) Montrer que la suite (un )n∈N∗ vérifie la relation de récurrence : ∀n ∈ N∗

un = (2p − 1)un−1 + 1 − p.

(c) Chercher a ∈ R telle que la suite de terme général un − a définisse une suite géométrique. (d) En déduire pour tout n ∈ N∗ l’expression de un en fonction de p et de n. Comment se comporte un quand n tend vers +∞ ? Commenter. Exercice 18 (I NDÉPENDANCE REVISITÉE ). Soient (Ω, A , P) un espace probabilisé. Pour tout événement A ∈ A , on note A +1 = A, A −1 = Ω \ A et A 0 = Ω. Soient n ∈ N∗ et (A k )1ÉkÉn ∈ A n . Montrer l’équivalence des trois assertions suivantes : (A k )1ÉkÉn est une famille finie d’événements P-indépendants ´ ³ \ Y ε ε P(A kk ) ∀(εk )1ÉkÉn ∈ {−1, 0, +1}n P A kk = 1ÉkÉn

∀(C k )1ÉkÉn ∈

Y

σ({A k }) P

³ \

1ÉkÉn

1ÉkÉn

2

(18.1) (18.2)

1ÉkÉn

´ Y P(C k ) Ck = 1ÉkÉn

(18.3)

View more...

Comments

Copyright � 2017 NANOPDF Inc.
SUPPORT NANOPDF