TD 5 – Trois séries 1 Des séries de variables aléatoires

January 16, 2018 | Author: Anonymous | Category: Mathématiques, Statistiques et probabilités
Share Embed Donate


Short Description

Download TD 5 – Trois séries 1 Des séries de variables aléatoires...

Description

Processus aléatoires

ENS Paris, 2013/2014 Bastien Mallein Bureau V2

TD 5 – Trois séries 6 mars 2014

1

Des séries de variables aléatoires

Exercice 1 (Série de Cauchy). Soit (Xn ) une suite de variables aléatoires i.i.d. de loi de Cauchy, et (an ) une suite de réels qui tend vers 0. Montrer que X X an Xn3 converge p.s. ⇐⇒ |an |1/3 < +∞. n≥1

n≥1

Exercice 2 (Somme de variables aléatoires positives). Soit (Xn ) une suite de variables aléatoires indépendantesPpositives p.s. Montrer que les trois propositions suivantes sont équivalentes : – Pn Xn < +∞ a.s. – E(Xn ∧ 1) < +∞, Pn  Xn  – n E Xn +1 . Exercice 3 (Vers la convergence stable). Soit p ∈ (1, 2), et X une variable aléatoire telle que E(X) = 0 et E(X p ) < +∞. (Xn ) une suite de variables aléatoires i.i.d. de même loi que X, et Sn = X1 + · · · + Xn . PSoit +∞ n n est convergente p.s. En déduire que nS1/p tend p.s. vers 0. Comparer à la loi forte des Montrer que n=1 nX1/p grands nombres. Exercice 4 (Série harmonique aléatoire). PSoit (Xn ) une suite de variables aléatoires telle que E(X) = 0 et E(|X| log(1 + |X|)) < +∞. Montrer que P n≥1 Xnn converge p.s. Indication : On pourra montrer que n≥1 log nP(|X1 | ≥ n) < +∞. Exercice 5. Soit an une suite de réels positifs, et Xn une suite de variables aléatoires indépendantes de loi P(Xn = an ) = P(Xn = −an ) =

1 . 2

a2n converge. P 2 Pn 2. On suppose maintenant que an est bornée, et que an diverge. On pose φ(n)2 = k=1 a2k , montrer Pn que k=1 Xk /φ(n) converge en loi. Déterminer cette loi limite. 1. Montrer que si

P

Xn converge en loi, alors

P

Exercice 6. Soit (Xn ) une suite de variables aléatoires indépendantes telles que Xn suit une loi exponentielle de paramètre λn . Déterminer une condition nécessaire et suffisante sur (λn ) pour P – la convergence de P Xn ; – la convergence de (Xn − λ1n ). 1

2

Lois extrêmes

Exercice 7 (La loi de Gumble). Soit (Xn ) une suite de variables aléatoires réelles indépendantes de même loi exponentielle de paramètre 1. On note Mn = maxi≤n Xi . 1. Montrer que pour tout x ∈ R, lim P(Mn ≥ x + ln n) = 1 − e−e

−x

n→+∞

.

Autrement dit, Mn − log n converge en loi vers une variable aléatoire G de loi dite de Gumble. 2. En déduire que Mn / log n converge vers 1 en probabilités, lorsque n → +∞. 3. Montrer que la convergence de la question précédente a en fait lieu presque sûrement. Exercice 8 (Maximum de variables aléatoires). Soit (Xn , n ≥ 1) une suite de variables aléatoires i.i.d. et Mn = maxj≤n Xj . 1. Montrer que si Xn est de loi uniforme sur [0, 1], alors n(Mn − 1) converge en loi et déterminer cette limite. 2. Montrer que si Xn suit une loi de Cauchy, alors Mnn converge en loi. 3. On suppose que Xn suit une loi gaussienne centrée réduite. Donner un équivalent en probabilité de Mn .

3

Les inclassables Pour (x1 , . . . xn ) un vecteur, on notera x(1) < . . . < x(n) ) le vecteur classé dans l’ordre croissant.

Exercice 9 (Vecteur uniforme classé). Soit n ≥ 2 un entier, et X1 , · · · Xn des variables aléatoires indépenPk dantes de loi exponentielle de paramètre 1. On note Sk = j=1 Xj . Montrer que le vecteur (Sk /Sn , 1 ≤ k ≤ n − 1) est indépendant de Sn , et a la même loi que (U (1) , . . . U (n−1) ), où (U1 , . . . Un ) est une suite de variables aléatoires i.i.d. de loi uniforme sur [0, 1]. Exercice 10 (Vecteur exponentiel classé). Soit (X1 , . . . Xn ) des variables aléatoires i.i.d. de loi exponentielle de paramètre 1. Déterminer la loi de (X (1) , X (2) − X (1) , . . . , X (n) − X (n−1) ). Exercice 11 (The Chinese restaurant). On considère un restaurant un peu particulier. Il contient une infinité de tables, de capacité infinie également. À chaque instant, un client se présente et décide, soit de s’asseoir à une table déjà occupée, soit d’aller à une nouvelle table, selon la règle suivante. À l’étape n ≥ 1, n clients sont déjà présents dans le restaurant. Le n + 1e client s’asseoit à une table qui avait m clients avec probabilité m/(n + θ), ou avec probabilité 1/(n + θ) prend une nouvelle table. On note Kn le nombre de tables occupées à l’instant n, et pour r ∈ N, on note Anr le nombre de clients assis à l’instant n à la rième table à avoir été occupée. Kn 1. Montrer que log n converge en probabilité, et déterminer la limite. 2. Améliorer ce résultat en une convergence presque sûre. 3. Soit (a1 , . . . ar )) des entiers tels que a1 + · · · + ar = n ; calculer la probabilité d’avoir a1 individus à la table 1 ... et ar à la table r. r) 4. Soit r ∈ N, déterminer la limite en loi, quand n → +∞, de (A1 ,...A . n

2

View more...

Comments

Copyright � 2017 NANOPDF Inc.
SUPPORT NANOPDF